// SPDX-License-Identifier: MIT
// solhint-disable private-vars-leading-underscore
pragma solidity 0.8.18;
import {DataTypes} from "./DataTypes.sol";
import {Events} from "./Events.sol";
import {ILinkModule4Note} from "../interfaces/ILinkModule4Note.sol";
import {IMintModule4Note} from "../interfaces/IMintModule4Note.sol";
import {IMintNFT} from "../interfaces/IMintNFT.sol";
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
library PostLogic {
using Strings for uint256;
function postNoteWithLink(
DataTypes.PostNoteData calldata vars,
uint256 noteId,
bytes32 linkItemType,
bytes32 linkKey,
bytes calldata data,
mapping(uint256 => mapping(uint256 => DataTypes.Note)) storage _noteByIdByCharacter
) external {
uint256 characterId = vars.characterId;
DataTypes.Note storage note = _noteByIdByCharacter[characterId][noteId];
// save note
note.contentUri = vars.contentUri;
if (linkItemType != bytes32(0)) {
note.linkItemType = linkItemType;
note.linkKey = linkKey;
}
// init link module
_setLinkModule4Note(
characterId,
noteId,
vars.linkModule,
vars.linkModuleInitData,
_noteByIdByCharacter
);
// init mint module
_setMintModule4Note(
characterId,
noteId,
vars.mintModule,
vars.mintModuleInitData,
_noteByIdByCharacter
);
emit Events.PostNote(characterId, noteId, linkKey, linkItemType, data);
}
function mintNote(
uint256 characterId,
uint256 noteId,
address to,
bytes calldata mintModuleData,
address mintNFTImpl,
mapping(uint256 => mapping(uint256 => DataTypes.Note)) storage _noteByIdByCharacter
) external returns (uint256 tokenId) {
DataTypes.Note storage note = _noteByIdByCharacter[characterId][noteId];
address mintNFT = note.mintNFT;
if (mintNFT == address(0)) {
mintNFT = _deployMintNFT(characterId, noteId, mintNFTImpl);
note.mintNFT = mintNFT;
}
// mint nft
tokenId = IMintNFT(mintNFT).mint(to);
address mintModule = note.mintModule;
if (mintModule != address(0)) {
IMintModule4Note(mintModule).processMint(to, characterId, noteId, mintModuleData);
}
emit Events.MintNote(to, characterId, noteId, mintNFT, tokenId);
}
function setNoteUri(
uint256 characterId,
uint256 noteId,
string calldata newUri,
mapping(uint256 => mapping(uint256 => DataTypes.Note)) storage _noteByIdByCharacter
) external {
_noteByIdByCharacter[characterId][noteId].contentUri = newUri;
emit Events.SetNoteUri(characterId, noteId, newUri);
}
/**
* @notice Sets link module for a given note.
* @param characterId The character ID to set link module for.
* @param noteId The note ID to set link module for.
* @param linkModule The link module to set.
* @param linkModuleInitData The data to pass to the link module for initialization, if any.
*/
function setLinkModule4Note(
uint256 characterId,
uint256 noteId,
address linkModule,
bytes calldata linkModuleInitData,
mapping(uint256 => mapping(uint256 => DataTypes.Note)) storage _noteByIdByCharacter
) external {
_setLinkModule4Note(
characterId,
noteId,
linkModule,
linkModuleInitData,
_noteByIdByCharacter
);
}
/**
* @notice Sets the mint module for a given note.
* @param characterId The character ID of note to set the mint module for.
* @param noteId The note ID of note.
* @param mintModule The mint module to set for note.
* @param mintModuleInitData The data to pass to the mint module.
*/
function setMintModule4Note(
uint256 characterId,
uint256 noteId,
address mintModule,
bytes calldata mintModuleInitData,
mapping(uint256 => mapping(uint256 => DataTypes.Note)) storage _noteByIdByCharacter
) external {
_setMintModule4Note(
characterId,
noteId,
mintModule,
mintModuleInitData,
_noteByIdByCharacter
);
}
function _deployMintNFT(
uint256 characterId,
uint256 noteId,
address mintNFTImpl
) internal returns (address mintNFT) {
string memory symbol = string.concat(
"Note-",
characterId.toString(),
"-",
noteId.toString()
);
// deploy nft contract
mintNFT = Clones.clone(mintNFTImpl);
// initialize nft
IMintNFT(mintNFT).initialize(characterId, noteId, address(this), symbol, symbol);
}
function _setLinkModule4Note(
uint256 characterId,
uint256 noteId,
address linkModule,
bytes calldata linkModuleInitData,
mapping(uint256 => mapping(uint256 => DataTypes.Note)) storage _noteByIdByCharacter
) internal {
if (linkModule != address(0)) {
_noteByIdByCharacter[characterId][noteId].linkModule = linkModule;
bytes memory returnData = ILinkModule4Note(linkModule).initializeLinkModule(
characterId,
noteId,
linkModuleInitData
);
emit Events.SetLinkModule4Note(
characterId,
noteId,
linkModule,
linkModuleInitData,
returnData
);
}
}
function _setMintModule4Note(
uint256 characterId,
uint256 noteId,
address mintModule,
bytes calldata mintModuleInitData,
mapping(uint256 => mapping(uint256 => DataTypes.Note)) storage _noteByIdByCharacter
) internal {
if (mintModule != address(0)) {
_noteByIdByCharacter[characterId][noteId].mintModule = mintModule;
bytes memory returnData = IMintModule4Note(mintModule).initializeMintModule(
characterId,
noteId,
mintModuleInitData
);
emit Events.SetMintModule4Note(
characterId,
noteId,
mintModule,
mintModuleInitData,
returnData
);
}
}
}
@openzeppelin/contracts/proxy/Clones.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/Clones.sol)
pragma solidity ^0.8.0;
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*
* _Available since v3.4._
*/
library Clones {
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
/// @solidity memory-safe-assembly
assembly {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(0, 0x09, 0x37)
}
require(instance != address(0), "ERC1167: create failed");
}
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple time will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
/// @solidity memory-safe-assembly
assembly {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(0, 0x09, 0x37, salt)
}
require(instance != address(0), "ERC1167: create2 failed");
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := keccak256(add(ptr, 0x43), 0x55)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
}
@openzeppelin/contracts/utils/Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
@openzeppelin/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
@openzeppelin/contracts/utils/math/SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
contracts/interfaces/ILinkModule4Note.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;
interface ILinkModule4Note {
function initializeLinkModule(
uint256 characterId,
uint256 noteId,
bytes calldata data
) external returns (bytes memory);
function processLink(
address caller,
uint256 characterId,
uint256 noteId,
bytes calldata data
) external;
}
contracts/interfaces/IMintModule4Note.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;
interface IMintModule4Note {
/**
* @notice Initialize the MintModule for a specific note.
* @param characterId The character ID of the note to initialize.
* @param noteId The note ID to initialize.
* @param data The data passed from the user to be decoded.
* @return bytes The returned data of calling initializeMintModule.
*/
function initializeMintModule(
uint256 characterId,
uint256 noteId,
bytes calldata data
) external returns (bytes memory);
/**
* @notice Processes the mint logic. <br>
* Triggered when the `mintNote` of web3Entry is called, if mint module of note is set.
* @param to The receive address of the NFT.
* @param characterId The character ID of the note owner.
* @param noteId The note ID.
* @param data The data passed from the user to be decoded.
*/
function processMint(
address to,
uint256 characterId,
uint256 noteId,
bytes calldata data
) external;
}
contracts/interfaces/IMintNFT.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;
interface IMintNFT {
/**
* @notice Initialize the mint nft.
* @param characterId_ The character ID of the note to initialize.
* @param noteId_ The note ID to initialize.
* @param web3Entry_ The address of web3Entry contract.
* @param name_ The name to set for this NFT.
* @param symbol_ The symbol to set for this NFT.
*/
function initialize(
uint256 characterId_,
uint256 noteId_,
address web3Entry_,
string calldata name_,
string calldata symbol_
) external;
/**
* @notice Mints a note NFT to the specified address.
* This can only be called by web3Entry, and is called upon note.
* @param to The address to mint the NFT to.
* @return uint256 The minted token ID.
*/
function mint(address to) external returns (uint256);
/**
* @notice Changes the royalty percentage of specific token ID for secondary sales.
* Can only be called by character owner of note.
* @param tokenId The token ID to set.
* @param recipient The receive address.
* @param fraction The royalty percentage measured in basis points. Each basis point represents 0.01%.
*/
function setTokenRoyalty(uint256 tokenId, address recipient, uint96 fraction) external;
/**
* @notice Changes the default royalty percentage for secondary sales.
* Can only be called by character owner of note.
* @param recipient The receive address.
* @param fraction The royalty percentage measured in basis points. Each basis point represents 0.01%.
*/
function setDefaultRoyalty(address recipient, uint96 fraction) external;
/**
* @notice Deletes the default royalty percentage.
* Can only be called by character owner of note.
*/
function deleteDefaultRoyalty() external;
/**
* @notice Returns the original receiver of specified NFT.
* @return The address of original receiver.
*/
function originalReceiver(uint256 tokenId) external view returns (address);
/**
* @notice Returns the source note pointer mapped to this note NFT.
* @return characterId The character ID.
* @return noteId The note ID.
*/
function getSourceNotePointer() external view returns (uint256 characterId, uint256 noteId);
}
contracts/libraries/DataTypes.sol
// SPDX-License-Identifier: MIT
// solhint-disable contract-name-camelcase
pragma solidity 0.8.18;
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
/**
* @title DataTypes
* @notice A standard library of data types.
*/
library DataTypes {
struct MigrateData {
address account;
string handle;
string uri;
address[] toAddresses;
bytes32 linkType;
}
struct CreateCharacterData {
address to;
string handle;
string uri;
address linkModule;
bytes linkModuleInitData;
}
struct createThenLinkCharacterData {
uint256 fromCharacterId;
address to;
bytes32 linkType;
}
struct linkNoteData {
uint256 fromCharacterId;
uint256 toCharacterId;
uint256 toNoteId;
bytes32 linkType;
bytes data;
}
struct unlinkNoteData {
uint256 fromCharacterId;
uint256 toCharacterId;
uint256 toNoteId;
bytes32 linkType;
}
struct linkCharacterData {
uint256 fromCharacterId;
uint256 toCharacterId;
bytes32 linkType;
bytes data;
}
struct unlinkCharacterData {
uint256 fromCharacterId;
uint256 toCharacterId;
bytes32 linkType;
}
struct linkERC721Data {
uint256 fromCharacterId;
address tokenAddress;
uint256 tokenId;
bytes32 linkType;
bytes data;
}
struct unlinkERC721Data {
uint256 fromCharacterId;
address tokenAddress;
uint256 tokenId;
bytes32 linkType;
}
struct linkAddressData {
uint256 fromCharacterId;
address ethAddress;
bytes32 linkType;
bytes data;
}
struct unlinkAddressData {
uint256 fromCharacterId;
address ethAddress;
bytes32 linkType;
}
struct linkAnyUriData {
uint256 fromCharacterId;
string toUri;
bytes32 linkType;
bytes data;
}
struct unlinkAnyUriData {
uint256 fromCharacterId;
string toUri;
bytes32 linkType;
}
struct linkLinklistData {
uint256 fromCharacterId;
uint256 toLinkListId;
bytes32 linkType;
bytes data;
}
struct unlinkLinklistData {
uint256 fromCharacterId;
uint256 toLinkListId;
bytes32 linkType;
}
struct setLinkModule4CharacterData {
uint256 characterId;
address linkModule;
bytes linkModuleInitData;
}
struct setLinkModule4NoteData {
uint256 characterId;
uint256 noteId;
address linkModule;
bytes linkModuleInitData;
}
struct setLinkModule4LinklistData {
uint256 linklistId;
address linkModule;
bytes linkModuleInitData;
}
struct setLinkModule4ERC721Data {
address tokenAddress;
uint256 tokenId;
address linkModule;
bytes linkModuleInitData;
}
struct setLinkModule4AddressData {
address account;
address linkModule;
bytes linkModuleInitData;
}
struct setMintModule4NoteData {
uint256 characterId;
uint256 noteId;
address mintModule;
bytes mintModuleInitData;
}
struct linkCharactersInBatchData {
uint256 fromCharacterId;
uint256[] toCharacterIds;
bytes[] data;
address[] toAddresses;
bytes32 linkType;
}
struct LinkData {
uint256 linklistId;
uint256 linkItemType;
uint256 linkingCharacterId;
address linkingAddress;
uint256 linkingLinklistId;
bytes32 linkKey;
}
struct PostNoteData {
uint256 characterId;
string contentUri;
address linkModule;
bytes linkModuleInitData;
address mintModule;
bytes mintModuleInitData;
bool locked;
}
struct MintNoteData {
uint256 characterId;
uint256 noteId;
address to;
bytes mintModuleData;
}
// character struct
struct Character {
uint256 characterId;
string handle;
string uri;
uint256 noteCount;
address socialToken;
address linkModule;
}
/**
* @dev A struct containing data associated with each new note.
* @param linkItemType The link type of this note, if the note is a note with link.
* @param linkKey If linkKey is not empty, it is a note with link(eg.a comment to a character or a note).
* @param contentURI The URI associated with this note.
* @param linkModule The address of the current link module of this note, can be empty.
* @param mintModule The address of the current mint module of this note, can be empty.
* @param mintNFT The address of the mintNFT associated with this note, if any.
* @param deleted Whether the note is deleted.
* @param locked Whether the note is locked. If the note is locked, its owner can't set not uri anymore.
*/
struct Note {
bytes32 linkItemType;
bytes32 linkKey;
string contentUri;
address linkModule;
address mintModule;
address mintNFT;
bool deleted;
bool locked;
}
struct CharacterLinkStruct {
uint256 fromCharacterId;
uint256 toCharacterId;
bytes32 linkType;
}
struct NoteStruct {
uint256 characterId;
uint256 noteId;
}
struct ERC721Struct {
address tokenAddress;
uint256 erc721TokenId;
}
/**
@param blocklist The list of blocklist addresses.
@param allowlist The list of allowlist addresses.
*/
struct Operators4Note {
EnumerableSet.AddressSet blocklist;
EnumerableSet.AddressSet allowlist;
}
/**
* @dev A struct containing the necessary information to reconstruct an EIP-712 typed data signature.
* @param v The signature's recovery parameter.
* @param r The signature's r parameter.
* @param s The signature's s parameter
* @param deadline The signature's deadline.
*/
struct EIP712Signature {
uint8 v;
bytes32 r;
bytes32 s;
uint256 deadline;
}
}